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We study the retrieval behaviors of neural networks which are trained to optimize their performance
for an ensemble of noisy example patterns. In particular, we consider (1) the performance overlap,
which reflects the performance of the network in an operating condition identical to the training condi-
tion; (2) the storage overlap, which reflects the ability of the network to merely memorize the stored in-
formation; (3) the attractor overlap, which reflects the precision of retrieval for dilute feedback net-
works; and (4) the boundary overlap, which defines the boundary of the basin of attraction, and hence
the associative ability for dilute feedback networks. We find that for sufficiently low training noise, the
network optimizes its overall perforance by sacrificing the individual performance of a minority of pat-
terns, resulting in a two-band distribution of the aligning fields. For a narrow range of storage level, the
network loses and then regains its retrieval capability when the training noise level increases, and we in-
terpret that this reentrant retrieval behavior is related to competing tendencies in structuring the basins
of attraction for the stored patterns. Reentrant behavior is also observed in the space of synaptic in-
teractions, in which the replica symmetric solution of the optimal network destabilizes and then restabi-
lizes when the training noise level increases. We summarize these observations by picturing training
noises as an instrument for widening the basins of attractions of the stored patterns at the expense of re-
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ducing the precision of retrieval.

I. INTRODUCTION

The intimate relation between the training and retriev-
ing stages has been a subject of central interest in the
statistical-mechanical study of neural networks. To build
a network with optimal performance during retrieval, it
is important to train it using the appropriate example
patterns, performance criteria, and algorithms. Since the
introduction of the Hopfield model using a Hebbian
learning rule [1] and its statistical-mechanical analysis by
Amit, Gutfreund, and Sompolinsky [2], various other
learning rules and algorithms have been studied exten-
sively, including the pseudoinverse [3,4], Adaline [5], per-
ceptron [6], AdaTron [7], and ‘“‘training with noise” [8]
algorithms. These can be considered as attempts to dev-
ise efficient learning which optimizes certain aspects of
retrieval performance, such as retrieval accuracy or
robustness.

A unified view of these attempts can be provided by as-
sociating the dynamical processes of learning with the
optimization of performance functions in the space of
synaptic interactions [9-11]. For each kind of optimiza-
tion issue with respect to a set of patterns to be stored,
one may define an appropriate performance function of
the synaptic weights. Learning can then proceed step-
wise by a gradient-ascent process in the interaction space,
which can be considered as a search for a configuration
which optimizes the performance function [12]. This
procedure is equivalent to the search for ground states of
relevant Hamiltonians in many-body systems, and ex-
tends analogies used to minimize cost functions in some
classic hard combinatorial optimization problems [13].

We have studied the performance optimization for
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noisy training and retrieving conditions [9,14]. Noises in
neural networks may be present in the training data, the
data to be retrieved, or the retrieval dynamics. In this
paper, training noise refers to the random distortions of
the examples, presented to the network during the train-
ing stage, with respect to the perfect data to be stored; re-
trieving noise refers to the disorder present during the re-
trieving stage in the input data for which the network is
supposed to retrieve; and thermal noise refers to the sto-
chastic noise present in the retrieving dynamics during
the operation of the network. Retrieving noise may be
present in data available to the network, but in feedback
networks, it may also be caused, or amplified, by the
thermal noise which distorts the output signals before
they are fed back to the input ends of the neurons.

The study of noises in neural networks is interesting
for the following reasons. First, there are many situa-
tions in the application of neural networks where only
noisy data are available in the training stage. Algorithms
which optimize the network performance for a set of per-
fect training patterns may not be suitable for noisy train-
ing patterns. For example, the perceptron learning rule
[6] was devised to train a network using perfect training
examples. It has been empirically adapted to process
noisy training examples in the ‘“training with noise” algo-
rithm [8]. A convergence theorem can be proved for
both cases, which states that the learning rule will con-
verge to a network storing the examples, provided that it
exists. However, for an arbitrary set of examples cor-
rupted by noise, it is not clear whether the network corre-
sponding to the convergence limit of the “training with
noise” algorithm does exist. In fact, we have demonstrat-
ed that any network will inevitably retrieve the patterns
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with errors if the noise present in a training ensemble is
excessive [14]. It is therefore interesting to study the
effects of the deliberate introduction of training noise on
networks trained with algorithms which assume an other-
wise perfect training set.

Noises in training are not necessarily destructive in all
aspects. In the context of feedforward networks, it has
been shown that training noises improve the generaliza-
tion ability of a network in the so-called ‘“‘teacher net-
work” problem [15-17] and the “‘proximity” problem
[18]. In the context of attractor networks, we have
shown that training noises improve the associativity of
the networks, i.e., they widen the basins of attraction of
the stored patterns [14]. Furthermore, it has also been
shown that training noises enhance the robustness of re-
trieval against thermal noise in the retrieving dynamics
[9,19] and network damage [20]. To summarize, these
performance measures (generalization, associativity,
robustness against thermal noise and dilution) all involve
the processing of noisy data during retrieval, and it is not
surprising that training with noisy data can improve
these performances. On the other hand, other perfor-
mance measures such as the precision of the recall of the
trained examples, or attractor overlaps, deteriorate with
training noises, when these performances measures re-
quire the precision processing of clean input data. This
trade-off in the various performance measures has led us
to formulate the principle of specialization, namely, that
networks which are optimal for one performance measure
do not necessarily optimize others [9]. In fact, this prin-
ciple is merely a manifestation of the fact that the op-
timal network depends on the choice of the performance
function to be optimized. The improvement with the use
of training noises in some aspects of the performance
(despite the deterioration of the others) constitutes anoth-
e motivation for a more detailed study of their effects.

Finally, the above observations have assisted us to de-
vise strategies for optimal performance in the presence of
retrieving noise, thermal noise, and indeed other factors
affecting the environment of operation of the network [9].
This involves tuning the form of the performance func-
tion to be optimized and the noise level of the example
patterns during the training stage of the network. The
optimal strategy can be summarized by the principle of
adaptation, which states that networks which perform
optimally in any particular retrieving environment are
those which optimize the same performance criteria in
the same environment in training. Thus, for example,
when thermal noises are present, the feedback network
with optimal attractor overlap can be attained by setting
the algebraic form of the training performance criterion
corresponding to the same level of thermal noise in the
updating dynamics, and setting the training noise level
the same as the error level at the attractor. Similarly, the
network with optimal associativity can be attained by set-
ting the training noise the same as the error level at the
boundary of the basin of attraction. Networks construct-
ed by this strategy are called optimally adapted networks,
for they can be trained, at least in principle, by the pro-
cess of self-adaptation. In the self-adaptation of the feed-
back network with optimal attractor overlap, for exam-
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ple, training and retrieving are not separate processes.
Instead one allows the synaptic weights of the network to
be adiabatically adjusted to optimize the attractor over-
lap during the retrieval stage, using the retrieved signals
of the network as the training ensemble. The characteris-
tic of this process is that the ‘“‘on-line” training is
influenced by, and in turn influences, the retrieval perfor-
mance of the network; in this sense it is similar to the
adaptation of an organism in response to environmental
conditions. The principle of adaptation can also be ap-
plied to optimize the robustness against random dilution
of synapses [21]. Hence the study of training noise effects
is an important problem with potential applications to a
variety of retrieving conditions.

Indeed, the preliminary results presented in Ref. [14]
demonstrated the significance of training noises, and the
rich behavior on their variations. The introduction of an
infinitesimal training noise level is sufficient to convert a
marginally stable perceptron to a maximally stable one;
we refer to a network of maximally stable perceptrons as
the maximally stable network (MSN). Further increase
in training noise level introduces errors in both the feed-
forward and attractor modes, but enhances the associa-
tivity of the network. In the case of dilute attractor neur-
al networks storing random uncorrelated patterns, as we
have already reported in Ref. [14], for ¢=0.5 (i.e., 0.5
patterns per synapse) this enhancement in associativity is
indicated by a transition of the overlap my at the basin
boundary of attraction. For low training noise, mp is
nonzero and the network is said to be in the narrow re-
trieval regime; but when training noise increases, mp
vanishes and the wide retrieval regime sets in. The
behaviors at other values of storage level have not been
discussed explicitly, although it is clear that there are in-
teresting transitions as the storage level and training
noise are varied. For example, no narrow retrieval re-
gime is present at any training noise levels for a below
0.42. On the other hand, the network is in the nonre-
trieval regime in the high-training-noise limit for @ above
0.64; this can be seen from the fact that in the high-
training-noise limit the simple Hebbian covariance rule
performs optimally, and its storage capacity is 0.64. It is
therefore interesting to map out the phase diagram in the
space of storage level and training noise, and the extent of
validity of the picture presented in Ref. [14]. Remark-
ably, there exists a narrow range of storage levels for
which the network exhibits reentrant retrieval, which
means that when the training noise level increases, the
system loses, and then regains, its ability to retrieve the
stored patterns.

Equally surprising are the regions of stability of the re-
plica symmetric solution to the performance optimization
in the interaction space [22]. For all storage levels below
the optimal storage capacity (i.e., two patterns per
synapse) there exist reentrant de Almeida—Thouless tran-
sitions [23], in which the replica symmetric solution de-
stabilizes and then restabilizes when the training noise
level increases. In other words, there are two separate re-
gions of replica stability separated by a region of replica
instability for intermediate-training-noise levels. Fur-
thermore, the aligning field distributions in the two re-
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gions are very different. In the low-training-noise region
the distribution has two bands, whereas in the high-
training-noise region it has one continuous band. Since it
is generally believed that replica instability is a manifesta-
tion of the degree of frustration in the system, it appears
that the network finds itself less frustrated when it settles
in either a high- or a low-training-noise configuration in
the interaction space. For intermediate-training-noise
levels, strong competition is apparently present, resulting
in the multiplicity of optima associated with replica sym-
metry breaking.

These observations are consistent with the qualitative
picture that the network optimal to a high-training-noise
level exhibits wide but imperfect basins of attraction asso-
ciated with the stored patterns, as represented by the
Hebbian network [24]. (In fact, the Hebbian covariance
rule in its present mathematical form was first adopted in
the Hopfield model [1], which subsequently stimulated
the development of a whole class of related models, using
the Hebbian rule or otherwise [2]; here we refer to the
network trained with the Hebbian rule as the Hebbian,
rather than the Hopfield, network for specificity.) Here
the width of a basin of attraction refers to the range of
neuronal states which will converge to the attractor, and
its imperfectness refers to the quality of the retrieval. On
the other hand, low-training-noise levels result in narrow
but perfect basins as represented by the MSN. This ac-
counts for the behavioral dependence on the training
noise level. High generalization, associativity, low attrac-
tor overlaps, and low storage capacities are the features
of networks with wide, imperfect basins, whereas low
generalization, associativity, high attractor overlaps, and
high storage capacities are associated with narrow, per-
fect basins. In terms of information retrieval, wide, im-
perfect basins correspond to retrieving using broad asso-
ciations, whereas narrow, perfect basins correspond to re-
trieving using specific initial data.

This paper is organized as follows. In Sec. II we for-
mulate the appropriate performance function and its op-
timization. In Sec. III we consider the aligning field dis-
tribution; all the performance measures considered in this
paper are determined by this distribution. In Sec. IV we
consider two performance measures which are relevant to
retrieval in feedforward networks. They are the overlaps
with the stored outputs when the input pattern, respec-
tively, has the same noise level as the training noise, or is
entirely free of noise. They will be called performance
overlaps and storage overlaps, respectively. In Sec. V we
discuss two other performance measures which are
relevant to attractor networks. They are the overlaps
with the stored patterns at the attractors and at the basin
boundaries of attraction. They will be called attractor
overlaps and boundary overlaps, respectively. We can
then map out a phase diagram for the different dynamical
behaviors in the space of storage level and training noise
level, and describe the reentrant retrieval behavior. Pre-
liminary results have already been presented in Ref. [25].
Since the dynamical equations for extensively connected
networks are too complicated, we shall restrict ourselves
to dilute attractor networks whose dynamics is solvable
using iterative maps. We believe, however, that the pic-

4467

ture is still qualitatively valid for networks with more
general connectivity. In Sec. VI we consider the regions
of replica symmetry breaking, and report on the reen-
trant de Almeida—Thouless transition. In Sec. VII we
summarize and discuss the implications of our observa-
tions. The condition for replica symmetry breaking is de-
rived in the Appendix.

II. FORMULATION

Learning in neural networks can be considered as an
optimization process in the space of synaptic interac-
tions. This may be done by defining an energy function
E({J;}) in the space of interactions equal to the negative
of an appropriate performance function. Learning can
then be achieved by a dynamical process described by a
Langevin equation

& 3 R @.1)
ot 9J; J 7

where 7,(¢) is a noise term of zero mean and satisfies
(n;()(¢')) =2T,,8,8(t—1t'). The parameter T,, is
called the annealing temperature, and is introduced into
the dynamics of learning to prevent the network from be-
ing trapped in local minima. If one is interested in attain-
ing the ground state of the system, one may tune the an-
nealing temperature of this gradient-descent process to
zero at a sufficiently slow rate. In terms of the perfor-
mance function, this can be described as a gradient-
ascent process searching for the optimal state. In fact,
this process is equivalent to the computational method of
simulated annealing applied to complex optimization
problems.

Of course, learning can always be achieved in principle
by simulated annealing, as in any problem of optimiza-
tion. It may also be achievable by other methods, such as
an extension of the method of Thouless, Anderson, and
Palmer [26], introduced for the spin-glass problem, as
further developed to the cavity method [22].

In this paper we shall concentrate on the asymptotic
state of the learning process, assuming that the learning
dynamics is carried out sufficiently carefully that the sys-
tem does not get trapped in local minima, and conse-
quently the equilibrium state can be described by a
canonical ensemble corresponding to the temperature
T,,- By introducing a free energy corresponding to a
thermodynamic average at temperature T,, and then tak-
ing the limit T',, —O0, one obtains the ground state, which
is equivalent to the state of the maximum performance as
defined by the energy function. In the statistical-
mechanical approach, we are mainly interested in the so-
called thermodynamic limit, in which the network con-
sists of many neurons storing many patterns. In this lim-
it it is sufficient to consider the averaged behavior for a
set of random patterns obeying the same distribution, and
the replica method [27] can be used to produce relevant
results by facilitating the quenched averaging over the
random patterns.

This approach has been adopted by Gardner and Der-
rida [12] to give the storage capacity of the maximally
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stable network. There the performance function to be
optimized is virtually the output overlap with the stored
patterns corresponding to an input of the uncorrupted
patterns. They found that not only can the patterns be
marginally stabilized (i.e., the aligning fields of the stored
patterns are merely bounded below by zero), but that
they can be maximally stabilized (i.e., the aligning fields
are bounded below by a positive stability parameter K,
which depends on the storage level). The MSN ensures
the strongest possible memory associativity without
sacrificing the retrieval accuracy.

An alternative approach has been adopted by Gardner
[28], where the volume, or the entropy, in the space of in-
teractions stabilizing the patterns is calculated. The
storage capacity is attained when this volume shrinks to
zero. However, in the study of training noise, we are
mainly interested in cases where patterns are only highly
probable to be stabilized, for generic (i.e., not necessarily
small) training noise levels prevent them from being com-
pletely stabilized. The volume in the interaction space
stabilizing the patterns is therefore nonexistent, and the
energetic (or canonical) approach turns out to be more
suitable than the entropic (or microcanonical) approach.

In contrast to the above case of clean inputs, here we
consider optimizing the output overlap when noisy ver-
sions of the patterns to be retrieved are presented. This
optimization criterion tells us how best the network can
perform when it is trained by noisy data. It is convenient
to consider these inputs being chosen from an ensemble
of noisy versions of the stored patterns, and we are in-
terested in ensembles of very large sizes. The maximiza-
tion of this noise-optimal performance function can be
compared to the stepwise ““‘training with noise” algorithm
studied by Gardner, Stroud, and Wallace [8]. The algo-
rithm is an adaptation of the perceptron learning rule, in
which the clean patterns are presented to the network
one at a time repeatedly, and the synaptic interactions are
updated whenever the aligning field of a pattern is weaker
than the stability parameter K. In the training with noise
algorithm, the synaptic interactions are again updated ac-
cording to the perceptron learning rule, but with the in-
put patterns very slightly distorted by random noise.

Provided that a network configuration stabilizing the
set of examples exists, it can be proved that these pro-
cedures ensure the network configuration converges to
the solution. In this case, the result of the noise-optimal
performance function is identical to that of the training
with noise algorithm and this holds for infinitesimal
training noise. However, for the generic training noise
levels in which we are interested in this paper, the ensem-
ble of noisy examples cannot be completely stabilized,
and the network resultant from a corresponding training
with noise algorithm with the same noise level may not
be identical to that resultant from the training noise op-
timization. In fact, the performance function corre-
sponding to the training with noise algorithm is not the
output overlap of the noisy inputs, but is instead a func-
tion linear in the stability violation [10]. The noise-
optimal network studied here can only act as giving an
upper bound on the performance of the network retrieval
quality of the training with noise procedure. Neverthe-
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less, we believe that the effects of training noises are qual-
itatively the same.

To obtain meaningful results in the limit of infinite en-
semble size, two mathematical approaches can now be
adopted. In the first approach, the performance function
is first averaged over the infinite training ensemble, and
the network configuration optimizing this averaged per-
formance function is sought. If this procedure is modeled
by simulated annealing techniques, it involves evaluating
the drop in the network energy (or the increase in the
network performance), averaged over noisy examples ac-
cording to their probability of occurrence in the training
ensemble, before making a Monte Carlo move. This ap-
proach is adopted in our previous letter [14], and can be
called an annealed optimization approach.

The second approach treats the examples in a training
ensemble of fixed size as individual patterns. The net-
work configuration optimizing the performance function
of this training ensemble of fixed size is then sought. The
network performance corresponding to a training ensem-
ble of infinite size is then obtained by extrapolation. In
terms of practical procedures, this involves optimizing
the performance of a training ensemble of fixed size, and
then performing a finite-size analysis to find the asymp-
totic behavior in the thermodynamic limit. This ap-
proach, which can be called quenched optimization. is
similar to the work of Hansel and Sompolinsky [18], in
which a training ensemble of large but finite size is con-
sidered. However, as we shall find, the results obtained
by annealed or quenched optimization should be identical
in the limit of an ensemble of infinite size. More
specifically, the two results converge when the number of
examples per pattern exceeds the inverse of the annealing
temperature.

We now proceed to the mathematical formulation.
Consider, storing in a network of N McCulloch-Pitts
binary neurons, a set of p random patterns in the Ising
representation, i.e., {§54=¢1} with 1<j<N and
1=u=<p. The network topology is fixed and only the
synaptic strengths are modified, but our calculation ap-
plies to both a feedforward network with a single layer
architecture, or an attractor network. The training en-
semble consists of Q noisy examples for each pattern.
This means that, for 1 <v=<Q, the probability distribu-
tion of the presented examples {R /"] is

P(RI)=1(1+m,)8(RI"— &)+ L(1—m,)8(RE+E4)
2.2)

where we call m, the training overlap, since it is the aver-
age of R¥VEL over the training ensemble. It is related to
the training noise d, by m, =1—2d,. The retrieving stage
of the network is deterministically described by output-
ting, at neutron i, the Ising bit S/ with the same sign as
the local field of the input state, i.e.,

—=38,

Ve , (2.3)

S/ =sgn

where C is the input connectivity of a neuron, and S;
represents the C-component input state feeding neuron i.
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The noise-optimal performance function in the space of

interactions J; is given, for the output at neuron i, by the

overlaps of the output states S; with the stored outputs
& for all input states in the training ensemble

1

1
S8,=—7 3 &hsen | =
0
© v

RAY
ViR,

. (2.4)

Since the optimization on any one neuron is independent
of the others, it is sufficient to consider the performance
function defined on a single neuron, and subscripts i are
hereafter implicit.

In the annealed optimization approach, the perfor-
mance function is averaged in the limit Q approaching
infinity. The averaged performance function is now the
output overlap for noisy inputs drawn with the probabili-
ty of occurrence according to (2.2). It can be written as

1
v'C

> 8,= > P(R¥)sgn EFY-RH | . (2.5)
N

RM

This performance function can equivalently be interpret-
ed as the average output overlap of neurons whose aver-
age input overlap with a nominated pattern is m,. Its op-
timization thus corresponds to the update from overlap
m, in one time step. In the spherical model of the synap-
tic interactions, ¥, jJ ]~2=C, and the argument in the sign
function is a Gaussian variable of mean m,A* and vari-
ance 1—m}2, where A*=£*J-£#/V'C is the aligning field
of the clean version of pattern p [27-29]. The perfor-
mance function is now reduced to Zﬂgmt(A“), where

&m (A)=erf (2.6)

[2(1—m2)]'?

m,A ]

Using the replica method we have derived, in the replica
symmetric ansatz, an optimization procedure for an arbi-
trary performance function g which is dependent on the
aligning fields A¥. This procedure of optimization has
provided a unified perspective for various learning rules
[9-11], and is explicitly derived in Appendix 1 of Ref.
[9]. We summarize it as follows.

Consider optimizing the performance ¥ ,g(A,). The
averaged maximum performance per pattern is
JdAp(A)g(A), where p(A) is the aligning field distribu-
tion given by

p(A)= [ Dt 8(A—A(1), @.7)

where Dt =dt exp( —t2/2)/\/57-, and A(¢) is the inverse
function of ¢(A) defined by

t(A)=A—yg'(A), (2.8)

where 7y is the interaction susceptibility given by
y=( (sz ) T, (Jj )ZT“ )/T,,, with () r, Tepresenting
the thermodynamic average over the canonical ensemble
in the interaction space at the annealing temperature T, .
It is determined by the condition
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[DtM)—tP=a"", (2.9)
with a=p /C being the storage level. When the function
A(t) is multivalued, we choose the argument which gives
the largest value of g(A)—(A—t)?/2y. This is equivalent
to discarding the range of argument [A_,A.] given by
the Maxwell construction

A'>
[, art=ta =20, (2.10)

where 1y =t(A_)=t(A.). See Fig. 1.

To study the retrieval stage of this optimized network,
we consider the output overlaps f(m) with a stored pat-
tern for an arbitrary input overlap m. Again, this map-
ping is determined by the aligning field distribution p(A).
Following the argument used in deriving (2.6), namely,
that the local field for an input overlap m with pattern p
is a Gaussian variable with mean mA£* and variance
1—m?2, we have

fm(m)=[dAp,, (Mg, (A), (.11

where g,,(A) is given by (2.6) with m, replaced by m.
Here we have explicitly included the subscript m, to em-
phasize the dependence on both the training overlap m,
and the retrieval overlap m. Note that the output over-
lap reduces to the maximum performance function when
m becomes m,.

This completes the formulation of the annealed optimi-

boo
b
A
m (h<,bo) ™ (A>,tg)
2+
1 1 1 1 | 1 1 1
-2 -1 0 1 2
A
FIG. 1. The Maxwell construction for A(z). The points

(A-,t5) and (A _,2;) are chosen such that the areas 4, and 4,
are equal. The continuous full curve ¢#(A) is given by (2.7), but
the physical curve for A(¢) has the discontinuity indicated. Here
a=1.5and m,=0.9.
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zation procedure.

In the quenched optimization approach, we treat the Q
examples of each pattern as individual patterns. Each
particular choice of patterns and noisy examples gives, in
general, a different performance function and therefore,
at annealing temperature T, , a different free energy.
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cl—-> 9apFop
a,B

a<f

({InZ))=1im 1 kextr exp
n—0Rn

+GJ({Ea}’[FaB])

L

The free energy is then quench averaged over the exam- +aG({g,5})
ple patterns and the stored patterns in turn. The deriva-
tion proceeds as in the case of annealed optimization. As (2.12)
in Appendix 1 of Ref. [9], the pattern-averaged free ener-
gy is given by where G; and G, are given by
J
expG,({E ), (Fog =TI [dJsexp [ S E,(1—02)+ 3 Foplods |, (2.13)
a a aa,<BB
dAdx, .
expGA((4ap)) =TT [ — —"exp [ Dikexo— 3 qupraxs
a a a,B
a<pf
Q
dAdy, B
XA = e | S7 568, 4 iboy, —impoh,—(1=md) 3, quyoy- | | o 14
lod o o, T
o<t

where B,,=T..' and, in general, g(A) is an arbitrary per-
formance function and in our case g(A)=sgn(A). In the
replica symmetric ansatz, in which q,5=g¢ for all a#g,
the expression raised to power Q can be rewritten, after
integrating over y, and taking the limit 8,, <<Q, as

dA
P A
exp{gf Zf [27T(1—mt2)(1_q)]1/zﬁang( )

(A—m A, —[(1—m})q])'?z}?
2(1—m2)(1—q)

Xexp

(2.15)

which is further reduced in the low-temperature limit
(Ban— 0,9 —1) to exp{ 3 Ban8ei(Ay)} Where

ger(A)= [ Dz g(m, A+(1—m2)"%z) . (2.16)
Substituting this result into (2.14), and comparing with
(A1.5) of Ref. [9], we see that g.4(A) is indeed the
effective performance function in the present noisy train-
ing situation. Since the function g in the integrand of
(2.16) is the sign function, the effective performance be-
comes identical to the performance function in (2.6). The
subsequent procedure is the same as (2.6)—(2.11). Thus
we have verified the equivalence of the annealed and
quenched optimization approaches provided that the size
of the training ensemble satisfies Q >>f,.. Physically,
this means that the two approaches are indistinguishable,
provided that T,,>>Q !, ie. the optimization pro-
cedure cannot resolve the fluctuation caused by one fur-
ther or lesser example per pattern in the training ensem-
ble.

III. THE ALIGNING FIELD DISTRIBUTION

Having derived the basic results in (2.6)-(2.11), we
now proceed to consider various cases. The performance
measures considered in this paper depend on the aligning
field distribution p(A), which in turn depends on the in-
verted function A(z). Below we consider the effects of
progressively decreasing the training overlap m,. Figure
2 shows the field distribution p(A) for different training

overlaps.
my=0* A
m=0.4 A_A\
p(A)
m¢=mc¢
mt:o'g/.l " L.
st
m=1 I n \
-4 -2 0] 2 4

FIG. 2. The aligning field distribution p(A) for different
training overlaps from the MSN limit to the Hebbian network
limit, at a=1.5. Starting from the bottom, the curves corre-
spond to m,=17, 0.9, m_, 0.4, and O*. (1~ denotes a number
infinitesimally less than 1, and O denotes a number
infinitesimally greater than 0.) Here m,=0.78. The vertical
scale for the individual curves is separated by 0.6 units. The
curve for m, =17 has a §-function peak at K(a)=0.19.
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A. m,=1

First consider the case with no training noise, i.e.,
m,=1, when g(A) in (2.6) becomes sgn(A). The inverted
function A(¢) then becomes

t, t20ort<—Viy

M=o , 0>1>—Vay .

(3.1

v is determined by the condition (2.9), which yields

-1 [© 2
= Dtt-.
@ f_\/ry

The aligning field distribution is given by a normalized
Gaussian, with the truncated region between O and
—V 4y replaced by a § function of the same weight locat-
ed at A=0,i.e.,

—_— A2
P (M)=[O(A)+6(—Vay — 7)) ZRA/2)

V2w
+[f°

(3.2)

Dt ]s(A) : (3.3)
where ©(A) is the step function of its argument A. This
shows that when ¥ is finite, there is a nonvanishing prob-
ability that a pattern cannot be stabilized, i.e., its aligning
field is negative. In this case, the network optimizes its
performance by having two bands in its aligning field dis-
tribution, so that those patterns which violate their
prescribed outputs do so by the fullest extent of violation.
Apparently, this is the consequence of the nature of the
particular performance function, which is a sign function,
for the network pays the same penalty so long as the
aligning field of a pattern is negative, irrespective of
whether the aligning field is weakly or strongly negative.
It seems that by keeping the aligning field violations as
strong as possible, the network manages to keep the viola-
tions as few as possible, so that the overall performance is
maximized by this sacrificial effect.

Since the right-hand side of (3.2) is bounded above by
1, the optimization calculation is valid only for a greater
than 2. When a approaches 2, ¥ approaches infinity and
the lower band of the aligning field distribution vanishes.
The network becomes marginally stable because the
aligning fields are merely bounded below by zero. This
yields a storage capacity for errorless output at a, =2,
agreeing with the results of Gardner and Derrida [12].

Below the storage capacity, no solution for (3.3) exists,
and the optimization calculation is no longer valid. This
is because we have assumed, in the derivation of
(2.5)-(2.9), that the ground-state configuration is nonde-
generate, so that the overlap order parameter g ap-
proaches 1 in the low-temperature limit. Below the
storage capacity, the volume of the ground-state
configuration remains finite and g remains below 1 [28].

B. m,=1"

Next we consider the case with an infinitesimal train-
ing noise, i.e., m,=1". It is now convenient to introduce
A, defined by the relation

exp{ —[m?2/2(1—m}) A}

R2m(1—m}2)/m?2]/?

=1, (3.4)
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so that the function ?(A) can be written, in the limit that
the training noise d, =(1—m,)/2—0, as

1
8d,

t(A)=A—exp (A2=2%) | . (3.5)

This function has the property that t(A)=A for A2> A2,
and t(A) grows abruptly to large, negative values at
A==A,. By the Maxwell construction (2.10), the area
A, in Fig. 1 now approaches a triangle with vertices
(A cytg), (—Aptg), and (—A;, —A)), and the area 4, be-
comes a strip enclosed between A==*A,. Furthermore,
we shall justify a posteriori that A, ~O(1), so that the
area of A,~exp[A?/(8d,)]>>1, and we can assume that
to and A _ are large and negative. Thus (3.5) can be ap-
proximated to give

to=~A., (3.6

to=A. —exp[(A3—A2%)/(8d,)], (3.7
and the Maxwell construction (2.10) becomes

LAL —A2) =2y =tp(A, —A L) . (3.8)
From (3.6) and (3.8),

to=A.=A,—V4y. 3.9)

In the limit d, approaching 0, (3.4) implies that
y ~exp[A?/(8d,)]. Thus combining (3.4), (3.7), and (3.9),
we can show that to within logarithmic corrections which
are negligible in the limit of small d,,

M

Ay —
7—i‘+0(d,1nd,) and to=A_=—=—V4y.

A= v

(3.10)

It remains to determine the value of A,. Equation (3.7)
entails that

t, t>Aort<A.

MO=15, A>1~0(1) .

(3.11)
[For A <t <A, A(t) varies slowly from A; to A,. How-
ever, as t moves away from A, in this range, its contribu-
tion to the integral in (2.9) is rapidly fading, owing to the
Gaussian prefactor. Thus to the lowest-order approxima-
tion in d,, assigning A(z) to be A, in this range is already
sufficient.] Thus A,, and hence ¥, can be derived from
the condition (2.9), giving
A

[ Dt(r—1)*=a"". (3.12)
This justifies our previous approximation that A, ~O(1).
Strikingly, this expression for A, is identical to that for
the maximal stability parameter K(a) introduced by
Gardner [28]. She found that network configurations sta-
bilizing the prescribed patterns exist, even when the
lower bound of the aligning fields is as high as K(a).
Furthermore, the stepwise perceptron learning rule can
be adapted, so that synaptic updating proceeds whenever
the aligning field is weaker than K(a), and a convergence
theorem guarantees its converging to the target network
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configuration.

In the case of the training with noise algorithm, con-
vergence to the target network configuration is also
guaranteed, if such a configuration storing the examples
in the training ensemble exists. (We shall return to this
condition of existence below.) In this case, by introduc-
ing an infinitesimally small training noise, the learning
rule automatically results in a network with maximal sta-
bility after sufficiently long training. What is remarkable
is that the stability requirement of K(a) need not be im-
posed at each training step; it simply ‘“picks up” the sta-
bility K(a) by scanning through the ensemble of slightly
noisy examples.

Thus the network changes from marginally stable to
maximally stable when an infinitesimal training noise is
introduced. This discontinuity of network behavior can
be traced to a discontinuity of the training ensemble in
the two cases. In the m,=1 training ensemble, all the ex-
amples of a pattern are identical, and the network is
merely adapted to the retrieval of clean patterns. On the
other hand, the m,=1" ensemble contains a full range of
distinct noisy example patterns, each of whose probabili-
ty of occurrence decreases with its Hamming distance
from the clean patterns. The network is therefore adapt-
ed to the retrieval of noisy patterns, resulting in the maxi-
mal stability. It should be stressed, however, that this
discontinuity in network behavior is dependent on the
infinite size of the training ensemble, and an ensemble of
finite size will smooth out the discontinuity.

The aligning field distribution now has two bands for
all storage levels (not only for a >2). The upper band is
bounded below by K (a)/V2, has negligible weight up to
K(a), a very sharp peak at K(a), and essentially a Gauss-
ian of mean O and width 1 above K (a). The lower band is
a normalized Gaussian truncated at the upper bound
K(a)—V4y with y — . Thus the distribution becomes
indistinguishable with that for the MSN [29-31].

C. m <1

When m, falls further below 1, the band gap in the
aligning field distribution starts to narrow. The lower
band has its weight increasing with training noise, and its
upper bound shifts upwards.

In the upper band, the sharp peak in the neighborhood
of A=K degenerates into a broader, but still sharp peak.
Despite the narrowing of the band gap, the lower bound
of the upper band first shifts slightly upward before it
eventually shifts downward with increasing training
noise. In fact, if we expand (3.6)—(3.10) to the next
higher order in d,, we see that while
A~ —O(exp(K?/(16d,)) accounts for the narrowing of
the band gap, A is given by

A= —=-d,|Ind, | (3.13)

i

where K is still given by A, in (3.12). However, the initial
upward shift of A, is only very small. For example,
when @=0.7, A, increases from 0.53 to a maximum of
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0.54 when m, drops from 1 to 0.98, and then decreases on
dropping m, thereafter.

The change in the shape of the distribution function
when the training noise changes can be considered as a
manifestation of the sacrificial effect. When the sig-
moidal performance function (2.6) smoothens on increas-
ing training noise, the network manages to maximize the
performance by increasing the weight of the lower band
at the far negative end. By making this sacrifice, the
sharp peak in the upper band manages to broaden itself
in a region where the performance function has a greater
slope. In the neighborhood of the peak position A,

(A)=1"(A) exE[—t(A)Z/z]

Prm, Vor
~expl—;dl—(A—M)
t
A M (A—2) 2
2 | T g, !

(3.14)

by virtue of (2.8) and (3.5). This shows that the distribu-
tion drops much more drastically on the side A <A, than
A>A;. This asymmetric broadening allows the weight of
the distribution function to shift more positive and per-
form better than the field distributions of lower training
noises, which resemble more the 8-truncated Gaussian of
the MSN.

This sacrificial mechanism enables us to improve the
performance for noisy retrieval inputs. The same kind of
observation has prompted a number of authors to look
for performance improvement above saturation [19,10]
although their performance functions do not have an op-
timal form. In fact, we have formulated a principle of
adaptation [9], stating that the network performs best for
a retrieval noise identical to the training noise.

A further reduction in m, results in a narrowing of the
band gap and a smoothening of the peak. At m,=m, the
two bands merge. This corresponds to the coalescence of
A, and A _ in the Maxwell construction (2.10). Thus we
have

t'(A)=t"(A,)=0 (3.15)
where A, =A _=A,. This reduces to
(1_m2)1/2 172
[0z )
mC
2 (3.16)
_ |me 1—m,
14 5 2 .

4

Substituting into the condition (2.9), we obtain a relation
between m, and «,

t()» 1

tc’(k)[k—tc(}»)]ZZa' , (3.17)

f \/277

where 7, (A)=A+A exp[(1—A%2/A2)/2].
In the extremely noisy limit, m,—0, the performance
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function becomes linear in the aligning field A. The in-
verted function A(¢) then becomes

1

AM)=t+—, (3.18)
Va
and the aligning field distribution becomes
2
(A)=—t—exp |—1 [A-—L (3.19)
P2V P T2 | Va0 '

which is a normalized Gaussian of mean 1/V a. This dis-
tribution coincides with that of the Hebbian rule with

1
W= % grel . (3.20)
The network optimal in the high-training-noise limit is
necessarily the Hebbian network. Our studies in Boolean
networks [32] showed that the Hebbian network mini-
mizes the output error among all Boolean networks in the
high-training-noise limit. Since the set of synaptic net-
works is merely a subset of Boolean networks, the Hebbi-
an network must also minimize the output error among
all synaptic networks in that limit, which is indeed the
present result.

IV. PERFORMANCE AND STORAGE OVERLAPS

The first performance measure of interest is f mt(m,),

i.e., the output overlap with a stored pattern when, dur-
ing retrieval, the input state obeys the same statistics as
the training ensemble. We call this the performance over-
lap since this is precisely the function which is maximized
in the optimization procedure. In feedforward networks,
this performance measure is related to the generalization
ability of the network. It is also the training measure if
the training ensemble is of infinite size. An example of
this application is given in the proximity problem con-
sidered by Hansel and Sompolinsky [18], who also used a
noisy training stage.

In attractor networks, the performance overlap merely
describes the behavior in one iteration, and is therefore
not directly relevant to the attractor performance. How-
ever, the formulation of the principle of adaptation [9]
has brought a new dimension to the performance overlap
in dilute attractor networks. Since the optimal perfor-
mance is attained at identical training and retrieving
overlaps, the performance overlap fmt(m,) as a function

of m, becomes an envelope of the retrieval functions of
all network configurations. Consequently, the stable fixed
points of this retrieval envelope become, in the dilute at-
tractor network, the best attractor overlaps attainable by
any network configuration, and the unstable fixed points
delimit the widest basin boundary of attraction. Further-
more, retrieval envelopes describe the dynamics of some
self-adaptive processes, in the same way that individual
retrieval functions describe the dynamics of retrieval pro-
cesses. Self-adaptation is a process in which the output
states of the network are fed back to the input ends of the
neurons, to act as input states for further retrieval, as
well as training examples for further adiabatic
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modification of the synaptic weights, so that the network
optimizes its performance in the environment generated
by its own output at the retrieval attractor. Our study of
retrieval envelopes [9] points to the possibility of such
processes, although practical adaptive algorithms have
not been studied in detail.

In contrast to the learning of perfect patterns, in which
the resultant performance can be errorless below the
storage capacity, training with a noisy ensemble usually
leads to imperfect outputs. To estimate the amount of
training noise required to cause disruption in the perfor-
mance overlap, we note that in the low-training-noise
limit, the performance overlap fmt(m,) is given by (2.11),

where the function A(?) is given by (3.11), and A=K (a),
so that

K(a)?
8d,

fm(m,)~1—0 |exp 4.1)

For attractor neural networks, errorless retrieval of a pat-
tern in one iteration at all the N output nodes is possible
only up to a training noise which causes the performance
overlap to drop from 1 by an amount of the order N ~ 1.
This implies that the maximum training noise for error-
less performance is given by

_K(a)
' 8InN °

Any training noise higher than this, and in particular any
generic training noise of the order N° will inevitably
cause error in the performance measure. Similarly, for
feedforward neural networks with only one output node,
errorless retrieval of all the p patterns is possible only up
to a training noise given by d, =K (a)?/(81Inp). Figure 3
shows the dependence of the performance overlap on
training noise of the order N°. It decreases from 1 to O
when the training overlap decreases from 1 to O.

Another performance measure of interest is f| ’",( 1),i.e,

4.2)

08

0.6 -

fm, (my)

04 -

02 -

0 | | 1 I
1.0 0.8 0.6 0.4 0.2 0

m

FIG. 3. The dependence of the performance overlap f, ,,,,(m,)

on the training overlap m, for =0.4,0.6,1.6 (from top to bot-
tom). Note that in Figs. 3, 4, and 6, m, is plotted in reverse
direction to illustrate the effects of increasing training noise d,.
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the output overlap with a stored pattern when, during re-
trieval, a perfect input pattern is presented. We call this
the storage overlap. It measures the extent to which a
perfect pattern can be recovered during retrieval, when
the network is trained on an ensemble of noisy patterns
without the perfect input pattern being presented deli-
berately. In fact, this ability to recover a perfect pattern
from an ensemble of partially similar patterns has been
observed in neural networks and is called spontaneous
generalization [33]. In feedforward networks, this is re-
lated to the rule extraction ability of the networks by
filtering out the noises in the training stage.

Again, errorless retrieval is not possible for generic
training noises of the order N°. However, when com-
pared with the performance overlap, the restriction on
training noise is less stringent, since there is no error in
the input for the case of storage overlap. To estimate the
critical amount of training noise, we note that, in the
low-training-noise limit, the storage overlap fmt(l) is

given via (2.11) by

fm (D=erfl—1/V2) . 4.3)

Using (3.10), we obtain —¢,~exp[K(a)*/(8d,)], which
further implies

K(a)?
8d,

fmt(1)~l—0 exp | —exp

] . (4.4)

For attractor networks, retrieval errors become inevitable
when f,, (1)~1 —O(N™1). This yields the maximum

training noise for errorless storage after one step in at-
tractor neural networks as

_ K(a)?

* 8InlnN ’
whereas the training noise for errorless storage in feedfor-
ward neural networks is d,=K(a)?/(8Inlnp). The re-
striction on training noise reveals a disadvantage of the
training with noise scheme, when compared with the
maximally stable perceptron algorithm, which has been
proposed as an alternative method to enhance memory
associativity. However, because of the double logarith-
mic dependence on N or p, this restriction is not too
stringent.

For a general training noise, the storage overlap f m’( 1)

(4.5)

is given by the averaging of the sign function of the align-
ing fields, by virtue of (2.11). Inspecting the aligning field
distribution determined by (2.7) and (2.8), we see that
when A is positive, the aligning field as a function of ¢ is
positive for ¢ >t,, and negative otherwise. On the other
hand, when A, is negative, the aligning field is positive

for ¢>t(0), and negative otherwise. Here
t(0)=—2y/[2m(1—m?2)/m?]'/? from (2.8). Thus
(D =exf | —=min(—t5, —(0)) | . (4.6)

V2

Figure 4 shows the dependence of the storage overlap
f ,,,t( 1) on training noise of the order N° It always

remains above the performance overlap f, mt(m,), and de-
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FIG. 4. The dependence of the storage overlap f ,,,1( 1) on the

training overlap m, for «=0.4,0.6,1.5 (from top to bottom).
The dashed line shows the position of the kink when a is varied.

creases from 1 to a nonzero value in the range of training
overlaps between 1 and 0. We also notice the presence of
a kink in the storage overlap curve. This kink signifies
that the bound A, of the upper band of the aligning field
distribution passes from positive to negative. The condi-
tion for the occurrence of the kink is therefore

to=1t(0) . 4.7)

V. ATTRACTOR AND BOUNDARY OVERLAPS

The dynamics of attractor neural networks becomes
greatly simplified in networks with dilute connectivity,
i.e., 1 <<InC <<InN. In this case, if the network state has
a macroscopic overlap m with only one of the stored pat-
terns, then the dynamics of the dilute network is com-
pletely determined by the iterative retrieval mapping [24].
This mapping relates the output overlap to the input
overlap, and is given by f m,(m) in (2.11). For parallel dy-

namics

m(t+1)=fmr(m(t)) , (5.1)
and for random sequential dynamics

dm(t) _ _

“ar fmr(m(t)) m(t) . (5.2)

In both kinds of dynamics, the attractor overlap corre-
sponds to the stable fixed points of the retrieval mapping

m*=fmt(m*) R (5.3)
and the basin boundary of the attractor is determined by
its unstable fixed points

mB=f,,,t(mB) . (5.4)
The storage capacity of the network is reached when the
stable fixed point m* corresponding to pattern retrieval
coalesces with one of the unstable fixed points my as the
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storage level is varied. In our previous work [14] we have
found the typical situation in which an increase in train-
ing noise causes the attractor overlap m* to deteriorate,
but the basin boundary mjp to decrease, signaling a
widening of the basins of attraction, or alternatively an
increase in associativity. For sufficiently high training
noise, the boundary overlap my drops to zero, and the
system is said to undergo a transition from the narrow re-
trieval phase to the wide retrieval phase. This essentially
describes the situation for sufficiently low storage.

Subsequent studies have revealed some intriguingly
surprisingly results when the storage level is raised
beyond the low storage regime. Algebraically this novel
behavior can be traced to the multiple fixed points of the
performance overlap f,,(m) for the storage level a be-
tween 0.599 and 0.637, when the input overlap m be-
comes identical to the training overlap m,. In fact, the
existence of multiple fixed points can be deduced from
series expansion and continuity arguments.

First we know that for a=0.637, the MSN, corre-
sponding to m,=1", is in the narrow retrieval regime
[31]. By the principle of adaptation, the performance
overlap f,,(m), is an envelope for all possible retrieval
mappings [9]. Therefore m =1 should also be a stable
fixed point of the performance overlap f,,(m).

Secondly, series expansion of the performance overlap
at m =0 yields
172
» (5.5)

implying that it is convex at m =0 for all values of a. We
note in passing that this behavior is already very different
from the retrieval mapping of the MSN [19] for which
the third-order term changes sign at the tricritical point.
This precludes the phase diagram involving the perfor-
mance overlap from having the same structure which is
indeed confirmed in Ref. [9]. -

When a drops slightly below V'2/7=0.637, the con-
vex region of the performance overlap in the immediate
neighborhood of m =0 lies above the diagonal line
fm(m)=m, whereas the region of f,,(m) slightly beyond
this neighborhood lies below the diagonal. Since the
curve must lie above the diagonal line again in the neigh-
borhood of m =1, it follows that the performance overlap
must have at least two convex regions separated by at
least one concave region. Numerical results confirm that
for a between 0.599 and 0.637, the performance overlap
has two convex regions separated by one concave region,
and it has two stable and two unstable fixed points for
0=<m =1, as shown in Fig. 5.

The relative depression of the performance overlap for
intermediate values of training overlap is a manifestation
of the difference between networks trained with high and
low noises in the examples. In the high-training-noise
network, retrieval is achieved from within broad basins
with only imprecise asymptotic overlaps, whereas in the
low-training-noise network, narrower basins are associat-
ed with more precise retrieval. In the intermediate re-
gion, the crossover between the two tendencies apparent-
ly cause the depression in performance.
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FIG. 5. A schematic plot of the performance overlap f,,(m)
having two stable and two unstable fixed points for 0<m <1.
The retrieval mapping f,(m) of the MSN, which has only one
unstable fixed point, is also shown for comparison. The indivi-
dual retrieval mappings, touching the envelope curve f,,(m) at
P, to Ps, respectively, show the transition from retrieval to non-
retrieval and back to retrieval when the training overlap is re-
duced. The subregion of nonretrieval spans from P, to P,, and
lies within the region of performance depression spanning from
QtoR.

A direct consequence of this medial depression is that
for a constant «, the attractor and boundary overlaps
cannot vary continuously from the maximally stable limit
to the Hebbian limit as the training overlap is decreased
continuously. This is because the attractor and boundary
overlaps must lie on the intersection of the diagonal line
and the retrieval mapping for each m, which is bounded
above by the performance overlap.

This discontinuity is a prerequisite for the reentrant re-
trieval behavior discussed here. This means that for con-
stant a between 0.599 and 0.637, there is an intermediate
range of training overlap for which the system is in the
nonretrieval phase, whereas for higher and lower training
overlaps retrieval is possible. As illustrated in Fig. 5, the
set of individual retrieval mappings for the particular
training overlaps m, is enveloped by the performance
overlap curve at m =m,, by virtue of the principle of
adaptation. Thus in the region where the performance
overlap is depressed below the diagonal line, there is a
subregion for which retrieval is not possible. Note, how-
ever, that this nonretrieval subregion is smaller than the
depressed region, for individual retrieval mappings with
m, a little within it are still able to intersect the diagonal
line, but with stable fixed points outside the depressed re-
gion.

Figures 6(a)—6(f) show the dependence of the attractor
and boundary overlaps on training overlap for different
storage levels. In Fig. 6(a), training noises disrupt the
stored patterns and reduce the attractor overlap, as found
previously [14]. On the other hand, the storage is
sufficiently low that the boundary overlap is always zero.
This means that the network is always in the wide re-
trieval region. Assuming that training noises enhance
network associativity as found previously [14], the MSN,
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FIG. 6. The dependence of the attractor and boundary over-
laps (solid and dashed lines, respectively) on the training overlap
for a= (a) 0.4, (b) 0.5, (c) 0.598, (d) 0.6, (e) 0.62, (f) 0.7.

corresponding to a training overlap of m,=1", is sup-
posed to have the least associativity. Since even the MSN
has wide retrieval basins for a below 0.42 [31], this
scenario of wide retrieval basins for all training overlaps
extends up to the storage level 0.42.

Figure 6(b) has been shown in Ref. [13]. Here the
storage level is above 0.42 but still sufficiently low. The
attractor overlap decreases with training noise, and the
basin of attraction changes from the narrow retrieval
phase of the MSN to the wide retrieval phase of higher
training noise.

In Fig. 6(c), the storage level becomes close to 0.599,
and the attractor and boundary overlaps approach the
value 0.53 at the training overlap of the same value. At
this point, the envelope curve f,,(m) becomes very close
to the diagonal line, and the curves of m* and my versus
m, can be approximated by a hyperbola. To see this, we
consider series expansion around the bifurcation point
(a,,m,)=(0.599,0.53) of the envelope curve fn(m)
where it touches the diagonal line. At this point,

d
fmp(mp)=mp and Efm(m) =1. (5.6)

p
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Furthermore, the principle of adaptation implies that

3
om,

Sm,(m,)| =0, (5.7)
p

which, on combining with (5.6), leads also to

2w =1

om, , (5.8)

Now consider deviations in the training overlap, retrieval
overlap, and storage levels, respectively, denoted by
€=m,—m,, €,=m,—m,, €,=a—a, Expanding the
fixed-point equation f,, (m)=m, we obtain

2 2 2
1&f L, &f 1&f ,__df,

+
29m} " 9m,dm, rT om? " da *’

(5.9

which corresponds to a hyperbolic equation.

At a=0.599, the envelope curve f,, (m) touches the di-
agonal line. Near the critical point, the curves of m* and
mp versus m, become a pair of straight lines, with m * al-
ways above mp. Thus both overlaps exhibit a discon-
tinuity in slope.

In Fig. 6(d) where « is slightly greater than 0.599, the
curves of m* and my versus m, become hyperbolas with
the gap opening in the conjugate direction. Reentrant re-
trieval behavior appears. At low training noise, the
stored patterns have narrow basins. As the training noise
increases, the attractor and boundary overlaps coalesce
and the patterns are no longer retrievable. But as the
training noise further increases, a pair of stable and un-
stable fixed points appears again and bifurcates. Thus the
attractors of the stored patterns appear again with nar-
row basins of attraction, which become wide basins on
further increase of training noise.

Figure 6(e) shows a similar reentrant behavior at a
higher storage level, but the reentrant retrieval phase has
a wide basin of attraction for all the training noise levels
where it exists. The nonretreival gap widens, and the ex-
tent of the reentrant retrieval phase shrinks with increas-
ing storage level.

For storage levels above 0.637, even the limit of the
Hebbian network, corresponding to extremely high train-
ing noise, cannot sustain the reentrant retrieval phase.
Thus the reentrant phase disappears altogether. Narrow
retrieval is possible at low training noise, and no retrieval
is possible at high training noise, as illustrated in Fig. 6(f).

The fixed-point curves in Figs. 6(a)-6(f) further de-
scribe the self-adaptation processes proposed in Ref. [9].
In self-adaptation, the performance overlap is considered
to be an envelope of retrieval mappings. Its stable fixed
points give the networks, or retrievers, with optimal at-
tractor overlap attained by processes of self-adaptation.
We have found that for a between 0.599 and 0.637, a
strong retriever with a higher attractor overlap coexists
with a weak retriever with a lower attractor overlap. The
strong retriever has the globally maximum attractor
overlap, and is given by the MSN at zero temperature.
The weak retriever has a locally maximum attractor
overlap. From Figs. 6(d) and 6(e), this local maximum is
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simply the maximum of the reentrant retrieval phase.
Similarly, if we consider maximizing the basins of attrac-
tion, we have a wide retriever coexisting with a narrow
one. The wide retriever is the Hebbian network, and the
narrow retriever simply corresponds to the minimum my
in the retrieval branch of higher training overlap. Fur-
thermore, the maxima and minima of the fixed-point
curves all lie on the diagonal line on which training over-
lap equals retrieval overlap, by virtue of the principle of
adaptation.

We specify that self-adaptation involves the network
state first locating a retrieval attractor, and then adiabati-
cally optimizing its performance at the attractor. Then it
is obvious that for a between 0.599 and 0.637, the range
of training overlaps in the principal retrieval branch
defines one basin of adaptation, whereas those in the
reentrant retrieval branch define another. For the inter-
mediate range of training overlaps, no retrieval is possi-
ble, and hence they do not belong to either basin. For
lower a the network has a wide basin of adaptation, and
for higher « it has a narrow basin of adaptaton. (Alter-
natively, if the process of self-adaptation merely involves
the network state adiabatically optimizing its perfor-
mance at the output overlap, i.e., locating the attractor is
not a necessary step, then the basins of adaptation are
simply delimited by the unstable fixed points of the re-
trieval envelope.)

Figure 7 summarizes the various retrieval phases in the
space of m, and a. The wide retrieval phase is the region
where mpz=0. It vanishes when the fixed point m =0 of
the individual retrieval map f, mt(m) changes stability.

The phase boundary is therefore given by

f,',,‘(O):l . (5.10)
Depending on whether the retrieval map is convex or
concave at m =0, the wide retrieval phase may undergo a
transition to either the nonretrieval or narrow retrieval
phase, respectively. Since the retrieval map is an odd
function in m, as is evident from (2.11), this is determined
by the third derivative. This gives rise to a tricritical
point

f,',,t(O)=1 and f,',,':(0)=0, (5.11)
which is located at (a,m, )=(0.604,0.48).

For m, <0.48, the wide retrieval phase becomes nonre-
trieval on increasing a, but for m, >0.48, the wide re-
trieval phase first becomes narrow retrieval. The phase
transition is continuous, since a nonzero fixed point ei-
ther merges with or bifurcates from the fixed point at
m =0.

The narrow retrieval phase exists up to a higher «
when the nonzero stable and unstable fixed points merge
and disappear. The network then undergoes a discon-
tinuous transition to the nonretrieval phase. The phase
line separating the regions of narrow retrieval and nonre-

trieval is therefore given by
f,,,l(m)=m and f,’nr(m)=l . (5.12)

It meets the line of continuous transition at the tricritical
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FIG. 7. (a) The phase diagram of retrieval behaviors in the
space of m, and a. The upper right curve extends to the point
of maximum storage (a,m,)=(2,1). The dashed curve shows
the fixed points of the retrieval envelope. (b) The amplified
phase diagram around the tricritical point, showing three tran-
sition behaviors. (Horizontal magnification is 10 times vertical
magnification.)

point with a common slope [19].

To summarize, a wide retrieval phase exists at low
storage level, above which a narrow retrieval phase exists
at high training overlap, and a nonretrieval phase exists
at low training overlap.

The reentrant behavior can be observed around the tri-
critical point. This is indicated by a bend of the discon-
tinuous transition line before arriving at the tricritical
point. As training noise increases, the transition
behaviors at constant a are (i) only wide retrieval for a
below 0.42, (ii) narrow — wide retrieval for a between
0.42 and 0.599, (iii) narrow — nonretrieval — narrow
— wide retrieval for a between 0.599 and 0.604, (iv) nar-
row — nonretrieval — wide retrieval for a between
0.604 and 0.64, and (v) narrow — nonretrieval for a be-
tween 0.64 and 2.

For comparison, we have also plotted in Fig. 7 the
fixed points of the retrieval envelope. Note that this
curve touches the discontinuous transition line at the on-
set point of reentrant retrieval, i.e., (ap,mp). This curve
defines the bounds in the fixed-point retrieval overlaps of
the network, whereas the retrieval to nonretrieval transi-
tion line determines the bounds in the training overlaps
for network retrieval. In other words, the former deter-
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mines the vertical bounds in the plots of Figs. 6(a)-6(f),
and the latter determines the horizontal bounds.

Thus the presence of at most two stable and two unsta-
ble fixed points, in the range 0 <m =<1 on the retrieval en-
velopes of the present problem, gives rise to new features
which have not been observed in previous studies of re-
trieval in dilute networks [19,20], where retrieval map-
pings consist of at most two stable and one unstable fixed
points in the same range. In general, the possibility of
even more stable and unstable fixed points cannot be pre-
cluded. For example, even more complex fixed-point
structures have recently been reported in dilute networks
with external stimuli [34].

VI. STABILITY OF THE REPLICA SYMMETRY

The optimization procedure introduced in Sec. II has
assumed that the optimal solution is replica symmetric in
the space of synaptic interactions. In this section, we
consider the stability of the replica symmetric solution.
As derived in the Appendix, the condition for stability
against replica-symmetry-breaking fluctuations is given
by

a”'> [Den—17 . (6.1)

We now proceed to map out the stable and unstable re-
gions, and the phase lines separating them (i.e., the so-
called de Almeida—Thouless line), in the space of m, and
a. First consider the high storage limit, in which we ex-
pect that the aligning field distribution is single band, and
that the parameter y is small. Equation (2.8) then allows
us to write down the inverted function A(z) directly,
which is

A 4 exp[ —m2t2/2(1—m}?)] 6.2)
D Y i =mD mi] 2 '

The condition (2.9) then reduces to
2yim?

——=qa !, (6.3)
m(1—mH?

and the de Almeida-Thouless condition, which is ob-
tained by the equality of both sides of (6.1), becomes

2y*m} mp}
m(1—=mH? 1—m}

Combining (6.3) and (6.4), the de Almeida—Thouless con-
dition becomes m,=271/4=0.84. Thus, in the high
storage limit, the replica symmetric solution is stable for
m, <0. 84, and unstable otherwise.

Next, we consider the behavior when the aligning field
distribution changes from two-banded to one-banded.
From (3.15), the Taylor expansion around A, yields

=a !, (6.4)

III
t

t(A) =ty + G

(A=A, . (6.5)
The inverted function A(#)—A, ~(t—t.)!"?, and
A'(t)~(t—1ty)"2/3 diverges as t approaches t,. As a re-
sult, the integral in (6.1) diverges, implying that replica
symmetry is bound to be broken in the region sufficiently
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close to the training overlap m,.

Figure 8 shows the de Almeida—Thouless lines and the
band merging line. The band merging line starts at the
point (a,m,)=(0,0), and approaches the high storage
limit when m, approaches 1. There is a de
Almeida-Thouless line on each side of this line, and the
three lines converge in the low storage limit. As a result,
the region of replica symmetry breaking represents a very
small fraction of space in regions where retrieval is possi-
ble. Our previous observations on the retrieval behaviors
are only slightly affected.

For higher storage levels, the two de
Almeida—Thouless lines become increasingly distinct.
The lower line approaches m,=0.84 in the high storage
limit, whereas the upper line reaches an extremum at
(a,m,)=(6.3,0.94) and then bends back to terminate at
the point (a,m,)=(2,1).

The region of replica symmetry breaking effectively
separates the regions of replica symmetry into two.
Equivalently, reentrant de Almeida—Thouless transition
is present in the network. Furthermore, the aligning field
distribution in the upper region, of which the MSN is
representative, consists of two bands, whereas that in the
lower region, of which the Hebbian network is represen-
tative, consists of a single band only.

Traditionally, de Almeida—Thouless transitions in
neural networks are thought to be driven by pattern in-
terference. When the storage level is too high, the com-
peting tendencies to stabilize all patterns, which usually
involve conflicting instructions to encode information in
the interactions, result in the multiple ground states
characteristic of frustrated systems. Consequently, in
studies of optimization in networks, replica symmetry
breaking is usually found above some critical storage lev-
els [12,35]. This is illustrated in the high training overlap
regime in Fig. 8.

FIG. 8. The de Almeida—Thouless lines and the band merg-
ing line (solid and dashed lines, respectively) in the space of the
storage level a and the training overlap m,. The region of repli-
ca symmetry breaking is enclosed between the two de
Almeida—-Thouless lines. For comparison, the storage capacity
curve in Fig. 7 is also shown in dotted lines.
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However, the present study demonstrates that more
subtleties exist in the system. For example, the replica
symmetric solution for m, <0.84 is stable even in the
high storage limit, and the optimal solution in the high-
training-noise limit is always uniquely the Hebbian net-
work, in which the interactions are uniquely prescribed
by J; =388 /VaC.

Apparently, the form of the performance function to
be optimized contributes to the replica-symmetry-
breaking effects, which are manifested in the banded
structure of the aligning field distribution. In the neigh-
borhood of the region where the band gap in the aligning
field distribution starts to develop, the space of the align-
ing fields tends to be topologically disconnected as well.
The instability of the replica symmetric solution indicates
that there is a multiplicity of possible solutions in the
disconnected (or nearly disconnected) space competing to
be the optimal solution.

However, it is known that a few disordered systems ex-
hibit a discontinuous transition to the replica-symmetry-
breaking phase unrelated to the de Almeida—Thouless
line, in much the same way as a soft-mode instability can
be preempted by a first-order transition in several con-
ventional phase transitions [35,36]. At this stage we can-
not preclude this possibility in noise-optimal networks,
and this is definitely a subject for further investigation.
Nevertheless, this kind of transition, if existent, broadens
the region of replica instability, and the basic picture of a
replica-symmetry-breaking phase separating the high-
and low-training-noise regimes remains valid even if these
complications arise.

VII. CONCLUSION

We have studied the effects of training noise on neural
networks. For networks trained with noisy examples, we
found features that are characteristic of wide but imper-
fect basins associated with the stored patterns, as
represented by the Hebbian network. These networks
have high associativity, low attractor overlaps, and low
storage capacities. These wide, imperfect basins are usu-
ally associated with aligning field distributions of a single
continuous band, in which the extent of storage viola-
tions is more homogeneously distributed among all pat-
terns.

On the other hand, networks corresponding to low
training noises possess features that are characteristic of
perfect but narrow basins, as represented by the MSN.
These networks have low associativity, high attractor
overlaps, and high storage capacities. The perfect, nar-
row basins are usually associated with aligning field dis-
tributions with two bands, in which a minority of pat-
terns is sacrificially violated to sustain an overall optimal
performance.

Because of these competing tendencies, the system ex-
hibits interesting reentrant behaviors, both in the learn-
ing and the retrieving stage. In the learning stage, the
two-banded aligning field regime is separated from the
one-band regime by a region of replica symmetry break-
ing, signifying the frustration arising from the competi-
tion of many possible optima. On the other hand, this re-
sults in a slightly depressed performance for intermediate
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training noises, giving rise to a narrow region of storage
levels which exhibit reentrant retrieval behavior in dilute
attractor networks. Since reentrant retrieval depends on
a very delicate performance depression [for example, the
performance overlap Sm,(m,;) is merely at most 0.008

smaller than m, for a=0.62], it would be interesting to
explore whether the same phenomenon can be observed
in nondilute networks.

Other recent studies on the dynamical properties
reflect the difference between wide, imperfect and nar-
row, perfect basins when the training noise is varied [37].
An example is the pattern selectivity of neural networks.
In dilute Hebbian networks, this issue was first con-
sidered by Derrida, Gardner, and Zippelius [24]. They
considered a network storing two correlated patterns
among a background of p uncorrelated patterns. When
the storage level increases, the network undergoes a tran-
sition from the distinguishing phase (in which the net-
work retrieves and differentiates the two correlated pat-
terns) to the nondistinguishing phase (in which the net-
work retrieves a common portion of the patterns but fails
to differentiate them) and then to the nonretrieval phase.
Because of the wide basins, the nondistinguishing phase is
quite extensive in the Hebbian network. On the other
hand, we have recently considered the pattern selectivity
of the MSN [37] and found that the proportion of the re-
trieving section of the phase diagram corresponding to
the nondistinguishing phase is much reduced. This may
be attributed to the narrow basins of the MSN.

Another property reflecting the same features of basin
structures may be the nature of damage propagation. In
the dilute Hebbian network it is found that damage
spreads in the basins of attraction [24]. This means that
when differences are initially present in two network
states, the differences iterate towards some finite nonzero
value as the two states evolve. This reflects the fact that
the attractor occupies a subspace in the state space, or
that a cloud of attractors is present in the basin. On the
other hand, the attractor overlap is 1 in the MSN for «
below 2, reflecting the presence of a point attractor.
Again, this difference can be attributed to the difference
in basin structures in the two extreme limits of training
noises.

A further interesting dynamical measure is the activity
distribution [38], where the activity of a neuron is the
time-averaged neuronal state in the attractor. It has been
demonstrated that the Hebbian network has a partially
frozen activity distribution at low a, but a completely un-
frozen activity distribution at high a [38]. On the other
hand, the activities of neurons in the MSN are always
frozen for a below 2, since the attractor is always the
fixed point of the correct pattern. This again illustrates
the different basin structures of the networks.

Furthermore, we have recently found that when the
training overlap m, and the storage level a are varied, the
optimized networks can be broadly classified into
Hebbian-like or MSN-like [39]. The boundary separating
the two classes may be defined by either the band merg-
ing line in Fig. 8, or the line of minimum interaction sus-
ceptibility y, or the line of maximum deviation of the tra-
jectory between the Hebbian network and the MSN in
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the space of synaptic interactions. Although these lines
are distinct at high values of a, they converge to the line
m, =V'a at low values of a, corresponding to the condi-
tion that the signal-to-noise ratio m, /V a inherent in the
training ensemble is equal to unity. Universality classes
in the space of interactions have been proposed by Ab-
bott and Kepler [40], in which the Hebbian network and
the MSN belong to different classes. Here we have sub-
stantiated that because of the contrasting optimization
strategies and basin structures, such a classification has
physical implications for the learning and retrieving
behavior of the network.

Interestingly, similar effects of training noises are also
present in Boolean networks [32]. In the low-training-
noise limit, the optimal network is prescribed by the
nearest-neighbor majority rule, which has a low associa-
tivity, high attractor overlap, high storage capacity, high
selectivity, and point attractors, indicating that the basins
are perfect and narrow. In the high-training-noise limit,
the Hebbian network is optimal, and exhibits opposite
features.

This shows that the effects of training noise on these
measures of the retrieval behavior and the basin struc-
tures of neural networks are very universal. They are to
a large extent quite independent of the detailed structure
of the network. As a corollary, since multilayered net-
works can be considered as a subset of Boolean networks,
we expect that they have similar behaviors too.

A difference with the synaptic networks, however, is
that in Boolean networks there is no replica symmetry
breaking in the space of network parameters, for the
exceedingly large number of adjustable parameters
reduces the degree of frustration, in spite of competition
in the different terms of the performance function.

Although the notion of basin structures is most direct-
ly applicable to attractor neural networks, it is also
relevant to feedforward networks. In feedforward net-
works one is often interested in their generalization abili-
ty. This means that a general target relation exists be-
tween the input and output states (also called the “teach-
er network” if it can be realized by the given network ar-
chitecture [15-17]), and generalization involves recon-
structing this target relation using the information pro-
vided by a set of examples. In many cases, the target re-
lation is determined by the proximity of the input states
to a number of prototype states, as in the “proximity
problem” [18]. High training noises lead to wide, imper-
fect basins associated with each prototype, which corre-
spond to broad but imprecise generalization, meaning
that associations of input states far from a prototype are
still possible, but the precision of associations is generally
weak. Similarly, low training noises lead to perfect but
narrow basins, which correspond to more accurate asso-
ciations but with a more restricted range.

This may have consequences in the training of mul-
tilayered networks. When raw data are fed to the input
layer, wide basins may be necessary to retrieve signal
from a noisy background, and the accurate retrieval of
information at the basin centers may not be a high priori-
ty. Therefore high training noises may be preferred in
the training of this layer. However, the signal-to-noise
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ratio in the following layers may have progressively in-
creased, and broad associations may no longer be a high
priority. Therefore it is preferable to train these layers
with progressively lower training noises, so that progres-
sively accurate information can be retrieved.

The discovery that the region of replica symmetry
breaking separates the replica symmetric region into two
is also relevant to the dynamics of learning. Consider the
training of networks using noisy inputs with a fixed train-
ing noise level. As the number of patterns is increased,
the network passes from the two-band to one-band re-
gime through the region of replica symmetry breaking. If
learning is achieved by gradient-descent dynamics, this
means that the system will encounter a host of local mini-
ma, and this costs extra computational effort.

To conclude, we have demonstrated the effects of tun-
ing the basin structures of neural networks by training
noise on both learning and retrieving properties, and ex-
plained their underlying physics. It is hoped that this
study will help the design of neural networks optimal to
various operating conditions and requirements.

ACKNOWLEDGMENTS

We thank D. Wallace, H. W. Yau, and E. Domany for
stimulating discussions. This work was supported finan-
cially by Grant No. GR/G02727 of the Science and En-
gineering Research Council of the United Kingdom.
Computation facilities were provided by the University of
London Computer Centre.

APPENDIX

In this appendix we derive the condition for the stabili-
ty of the replica symmetric optimal solution in the space
of interactions. The derivation is a generalization of Ap-
pendix B in Ref. [12]. Following the notations in Appen-
dix 1 of our previous work [9], we evaluate the following
parameters required in calculating the eigenvalues of the
stability matrix:

’G, \a ) \a
P=—rm = (M) = (O5DT, (A1)
an
3’G, R , )y
o= aqaﬁaqa'y = >xk<x )X}‘>t_<<x>X7~>t , BFy,
(A2)
R==200 (=022 s aBrrs
aqaﬂaq‘ys xAlt xAlt ’ »0

(A3)

where (f(x)),, and { f(¢)), are, respectively, defined by
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[ (dxdr/2m)f (x)exp[ Bung (M) +ix(A—Vg1)—(1—g)x2/2]

(f(x) = - — (A4)
[ (dxd A /2m)explBoag (M) +ix(A—Vqt)—(1—q)x2/2]
(f),=[Dtf(1). (A5)
Following de Almeida and Thouless [23] the eigenvalue corresponding to replica-symmetry-breaking fluctuations is
Ya=P—20+R={({x2),,—(x)%,)?), . (A6)

In the limit 8,,— « and g — 1, the exponential terms in (A4) diverge, facilitating the use of steepest descent. In par-
ticular the denominator in (A4) becomes

—Vgt? | expBan{g(Ae)—(1/2y)[A)—t]*})
lim [ —dhexp | Bgr)— ATV aD |_ P an' 1/2y , (A7)
Bp—” V2m(1—q) 2(1—q) VI1—y"(M2)
where A(t) is given by (2.8). Substituting x for f(x) in (A4), the numerator becomes
V7 V) —t | exp(B, (g(M)—(1/29)[AMe)—1]*})
lim [ dr___ . |A=Vq: exp Ba,.g(k)—g———qt—)— —; | M=z | exp ant ____7_ } '
Bu—® V2m(l1—q) l1—q 2(1—gq) l1—gq Vi—yg" (M)
(A8)
Thus
A1)t
(x>XA=ll——q . (A9)
Similarly, substituting x2 for f(x) in (A5), the numerator becomes
2 —
. dA 1 A—Vqt (A—Vqt)?
lim . — ex (A)—
Banl—mf V2m(l—gq) | 1—¢q l1—gq P |Punt 2(1—q)
| Ao —t | 1 exp(Bunl g (M) —(1/27)[M2)—11*})
1—¢ 1—gq Ban(1—g [y 1 —g"(M2))] V1—yg"(A(1)) )
(A10)
|
Thus Using (2.7), we have
1
1 AMe)—t P—20+R=—— [ Dt[1-AN(t)]*. (A13)
2y — —
<x >xk— 1___q l—q Q (l_q)2f
1 The calculation of 3°G, /dF, «pOF 5 is similar to Ref. [11]
— . (A11) ielding, i i f Ref. [11
A=) 1—yg (MO)] yielding, in the notation of Ref. [11],
Hence ;=P —2Q'+R'=(1—¢q). (A14)
(x2) , —(x )2, = 1 1— 1 (A12) The condition for stability of the replica symmetric solu-
Xl T X T 1—gq 1—yg" (A1) tion is given by ay 5y ; <1, resulting in (6.1).
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